I 53

DIFLUOROPHOSPHATOFLUOROPHOSPHATES(V): SYNTHESIS AND CHARACTERISATIO BY ¹⁹F AND ONE- AND TWO-DIMENSIONAL ³¹P NMR SPECTROSCOPY

Richard C. Hibbert, Jeremy C. P. Sanders* and Michael F. A. Dove Department of Chemistry, The University, Nottingham NG7 2RD (U.K.)

The difluorophosphate ligand $-OPOF_2$ exhibits a high effective group electronegativity, as demonstrated by the stability (albeit marginal) of the xenon(II) derivatives Xe(OPOF₂)₂ and FXeOPOF₂ at 22°C (M. Eisenberg and D.D. Desmarteau, Inorg.Chem., 1972, <u>11</u>, 1901). Yet, inspite of this, the ligand remains virtually unstudied in terms of derivative chemistry. Only recently have the first anionic species B(OPOF₂)₄ (M.F.A. Dove, R.C. Hibbert and N. Logan, J.Chem.Soc. Dalton, 1984, 2719) and MF₅(OPOF₂), where M = P, As and Sb, (E.G. Il'in, M. Maizel, M.N. Shcherbakova, G.U. Volf and Yu.A. Buslaev, Dokl.Akad.Nauk., SSSR, 1982, <u>266</u>, 878), been reported. The chemistry of this interesting ligand has been extended to include other members of the octahedral PF_n(OPOF₂)⁷_{6-n}, n = 2-5, anion series. Thus, the normally 'inert' PF₆ anion reacts readily with P₂O₃F₄ at room temperature according to the equation

$$\text{Et}_4 \text{N}^+ \text{PF}_6^- + \text{nP}_2 \text{O}_3 \text{F}_4 \longrightarrow \text{Et}_4 \text{N}^+ \text{PF}_{6-n} (\text{OPOF}_2)_n^- + \text{nPOF}_3$$

The composition of the mixture of anions produced depends on the duration of the reaction. The anions have been characterised in solution by ${}^{31}P$ and ${}^{19}F$ NMR spectroscopy. Two-dimensional 31 COSY NMR experiments have been invaluable in assigning the connectivities between the $-OPOF_2$ ligand resonances and the six coordinate central phosphorus resonances. NMR demonstrates the existence of large proportions of the trans-isomer for $PF_4(OPOF_2)_2^-$ and $PF_2(OPOF_2)_4^-$ and of the mer-isomer for $PF_3(OPOF_2)_3^-$. This observation is unusual since cis isomers are normally observed in mixed octahedral systems with monoatomic ligands, e.g. $PF_nCl_{6-n}^-$ (Yu.A. Buslaev, E.G. Il'in and M.N. Shcherbakova, Dokl.Akad.Nauk., SSSR, 1974, 217, 317). The size of the $-OPOF_2$ ligand and mutual repulsion between ligands may be the cause of this.